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The laminar flow past a square cylinder symmetrically placed between two parallel
walls is considered. A classical vortex wake is shed from the cylinder, but three-
dimensional instabilities are present and they develop in complicated flow patterns.
The possibility of extracting an accurate low-order model of this flow is explored.

1. Introduction
Since the introduction in fluid mechanics of model reduction ideas (Lumley 1967),

one of the main concerns is to use small-dimensional surrogates to replace the Navier–
Stokes equations for control purposes. One application often targeted is the control
of vortex shedding (Graham, Peraire & Tang 1998); the benefits of such technology
range from reduced fatigue on materials and lower noise emissions, to flight of
thick-wing airships. Though examples of vortex shedding control built on low-order
models and solid optimization grounds have recently appeared (Bergmann, Cordier &
Brancher 2005), they are limited to two-dimensional laminar flows. One of the reasons
is that low-order models based on straightforward Galerkin projection over empirical
eigenmodes and ad hoc additional dissipation fail to represent the correct dynamics if
it is not a simple oscillation. Also it is not clear if a low-dimensional representation of
more complex flows can be found, and there are examples where such a representation
does not exist (Telib, Manhart & Iollo 2004).

In this contribution two possibilities are investigated: (i) providing a small-
dimensional representation of a fairly complicated flow and (ii) deriving an accurate
dynamical model from such a representation. Ma & Karniadakis (2002) and Galletti
et al. (2004, 2005) addressed similar questions for simpler flows. Here we investigate
the capability of the pseudo-spectral calibration approach introduced in Galletti et al.
(2005) to model a more complex flow (three-dimensional and non-periodic) than those
in the previous investigations. We concentrate on the case of a square cylinder placed
at the midspan between two parallel flat walls. The Reynolds numbers considered are
such that the flow is characterized by a three-dimensional vortex wake that interferes
with the upper and lower walls. Such a configuration has been briefly considered
in the literature. As a complement to existing experimental, two-dimensional or
theoretical studies, we investigated this flow by direct numerical simulation.

The first part of this paper is therefore a description of the numerical set-up and
an analysis of the results obtained. Then, low-order models of the impulsive start-up
as well as of the developed flow regimes are investigated.
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Figure 1. Computational domain.

2. Numerical simulation
The configuration used is sketched in figure 1. The ratio between the cylinder side

length L and the distance between the walls H is L/H = 1/8. The incoming flow is
a laminar Poiseuille flow in the x-direction and the Reynolds numbers, based on the
maximum velocity of the incoming flow and on L, range between 100 and 300.

For brevity, we only summarize here the main features of the numerical solver
employed in the simulations; more details can be found in Camarri et al. (2004)
and Farhat, Koobus & Tran (1999). The Navier–Stokes equations for compressible
flows are discretized in space using a mixed finite-volume/finite-element method
applied to unstructured tetrahedrizations. Linear Galerkin finite elements are used
to discretize the diffusive terms, while the discretization of the convective terms
is carried out through a finite-volume approach on cells built around each vertex
of the grid. The finite-volume fluxes through the common boundaries shared by
neighbouring cells are approximated by using the upwind Roe scheme (Roe 1981),
together with the MUSCL linear reconstruction method (‘Monotone Upwind Schemes
for Conservation Laws’, van Leer 1977), in order to obtain second-order accuracy
in space. Furthermore, a Turkel-type preconditioning term is introduced to avoid
the accuracy problems typical of compressible flow solvers at low Mach numbers
(Guillard & Viozat 1999). The time-marching algorithm is implicit and second-order
accurate.

The method of characteristics is used to impose non-reflective inflow and outflow
boundary conditions. At the inflow the Poiseuille flow is assumed to be undisturbed.
Periodic boundary conditions are imposed in the spanwise direction and no-slip
conditions are forced on the cylinder and on the parallel walls.

Two different computational domains were used, for carrying out two-dimensional
and three-dimensional simulations, which differ only in the spanwise extent of the
domain. In both cases, with reference to figure 1, Lin/L = 12 and Lout/L = 20.
For two-dimensional simulations, the spanwise length adopted is Lz/L = 0.6, and
it was systematically checked that the simulated spanwise velocity was negligible.
For the three-dimensional simulations, the spanwise length of the domain is
Lz/L = 6. This value was selected following the experimental results for unconfined
square-cylinder flow (Luo, Chew & Ng 2003), which show a maximum spanwise
length of the three-dimensional structures equal to 5.2L, and the indications given in
Sohankar, Norberg & Davidson (1999) and Saha, Biswas & Muralidhar (2003) for
the numerical study of the three-dimensional wake instabilities of a square cylinder
in an open uniform flow.
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Re St CD ACD
ACL

Re St CD ACD
ACL

GR1 100 0.1368 1.3758 0.0065 0.3715 180 0.1404 1.3659 0.0463 0.9303
GR3 100 0.1362 1.3820 0.0066 0.3638 180 0.1388 1.3803 0.0459 0.9423

Breuer et al. 100 0.1391 1.3500 0.0077 0.3835 180 0.1440 1.3250 0.0490 0.9090
Galletti et al. 100 0.1386 – – – 180 0.1370 – – –

Number of Nodes on
Re St CD ACD

ACL
nodes cylinder perim. Lz/L

GR1 300 0.1250 1.6205 0.4889 3.4019 7.5 × 105 250 0.6
GR2 300 0.1234 1.6359 0.5151 3.4635 6.6 × 105 210 0.6
GR3 300 0.1237 1.6509 0.5191 3.4807 6.0 × 105 170 0.6

GR4(3D) 300 0.1345 1.4596 0.0876 1.1889 6.6 × 106 250 6.0
Breuer et al. 300 0.1271 1.8603 0.5081 3.3534 1.904 × 105 100 –
Galletti et al. 300 0.1320 – – – ≈ 2.5 × 105 128 –

Table 1. Main bulk coefficients characterizing the aerodynamic forces acting on the cylinder
and details of the grids used. St is the shedding frequency, CD is the time-averaged drag
coefficient, ACD

and ACL
are the maximum amplitude of the oscillations of the drag and lift

coefficients respectively. All quantities are made non-dimensional by using L and the maximum
velocity of the incoming flow.

Grid convergence tests were carried out in the two-dimensional simulations using
three grids, mainly differing in the spatial resolution in the proximity of the cylinder.
Details of the grids are reported in table 1. The grid GR4, used for the three-
dimensional simulations, was built by replicating grid GR1 10 times in the spanwise
direction (see table 1).

Since we intend to simulate an incompressible flow, the computations were per-
formed by assuming that the maximum Mach number of the inflow profile is M = 0.1.
This value allows compressibility effects to be neglected in the results.

In order to validate the numerical approach and to perform a grid convergence
study, two-dimensional numerical simulations were carried out for Re = 100, 180 and
300, on grids GR1, GR2 and GR3. The results were compared with those obtained
for the same configuration in Breuer et al. (2000) and in Galletti et al. (2004),
with different numerical methods and grid resolutions. The main bulk parameters
characterizing the aerodynamic forces acting on the cylinder are shown in table 1; as
can be seen the agreement with the results obtained in the literature is satisfactory.
Moreover, it may be concluded that grid independence was almost reached, since
in all cases the difference between the parameter values obtained with the different
grids is very low (� 2%, except for ACD , which is, however, almost negligible in most
cases). Note that for the Strouhal number, St, the scatter between our results is lower
than that between the data in the literature.

Three-dimensional simulations were carried out on grid GR4 at Re = 300. They
are initiated from an impulsive start-up and the transient phase was recorded and
analysed in order to investigate the mechanisms of formation of three-dimensional
structures.

In figure 2(a) the time behaviour of the lift coefficient is shown. The values of the
maximum and minimum spanwise velocity in the field are also reported as an indicator
of the occurrence of three-dimensional phenomena in the flow. The three-dimensional
effects on the aerodynamic forces are seen to be already significant soon after the
vortex shedding phenomenon begins to take place, with a significant reduction of the
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Figure 2. (a) Time variation of the lift coefficient and of the maximum and minimum of the
spanwise velocity obtained in the three-dimensional simulation at Re = 300. (b) Streamwise
vorticity in the wake obtained at t � 35. The grey and black surfaces correspond to ωx = 0.05
and ωx = −0.05 respectively. (c) Streamwise vorticity in the wake obtained at t � 57. The grey
surface corresponds to ωx = 0.4 and the black to ωx = −0.4. (d) Streamwise and spanwise
vorticity components in the wake obtained after the transient. The black and light grey
surfaces correspond to ωz = −0.4 and ωz = 0.4 respectively. The streamwise tubes correspond
to ωx = 0.4 and ωx = −0.4 respectively.

oscillation amplitude of CL, due to the loss of coherence of the vortex shedding in
the spanwise direction.

Let us now analyse in more detail the form of the three-dimensional instabilities and
structures. Two different instability modes, initially identified in circular cylinder flows,
have been found for unconfined square cylinders in experiments (Luo et al. 2003) and
in the Floquet instability analysis (Robichaux, Balachandar & Vanka 1999). The first
one, mode A, occurs at lower Re and is characterized by the formation of large-scale
and wavy vortex loops that connect the spanwise von Kármán vortices. The other
one, mode B, is characterized by shorter, finer-scaled vortex loops. For unconfined
square cylinders, mode A was found to occur at Re � 160 with a spanwise wavelength
of 5.2L, and mode B at Re = 190–200 with a spanwise wavelength of 1.2L. A third
instability mode having a spanwise wavelength of 2.8L (mode S) was also identified
through Floquet analysis, which was not, however, observed in the experiments.

From the early stages of transition, the flow structure is complex, as shown in fig-
ure 2b, in which two isosurfaces of the streamwise vorticity are shown at a time
at which the spanwise velocity reached approximately 10 % of the maximum inflow
velocity. Mode-A-type structures tend to break into smaller vortical loops, but not yet
showing a well-defined spanwise length. Later in the transient (figure 2c), only these
smaller structures are visible, and they now have a much better defined periodical
behaviour with a spanwise wavelength of approximately 1L and are, thus, probably
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related to the instability mode B. These structures persist after the end of the
transient (see figure 2d) and in the developed three-dimensional wake they connect
the vortex tubes of the von Kármán street (in black and light grey in figure 2d). These
spanwise vortex tubes are in turn corrugated and distorted by the motion induced by
the streamwise vortices, and this is a typical scenario of three-dimensional wakes at
moderate Reynolds numbers, both for unconfined circular and square cylinders (see
Luo et al. 2003).

3. Low-order modelling
The possibility of reproducing a given dynamics is fundamental in devising even

crudely approximated control laws by systematic means, e.g. optimal control theory.
The main idea is to build a low-order model of an actuated flow from an existing
database. Using this model, one computes the optimal actuation and applies it to the
full approximation of the Navier–Stokes equations. If the error between this solution
and that of the low-order model is not within a certain tolerance, then a new low-order
model based on the latest Navier–Stokes solution is built. This iteration is performed
until the error is within the tolerance. It has been shown that the loop converges
under certain assumptions (Bergmann et al. 2005). Clearly, the crucial ingredient of
this approach is to be able to accurately reproduce the observed dynamics.

To this end, the discrete instantaneous velocity is expanded in terms of discrete
empirical eigenmodes: u(x, t) = u(x) +

∑Nr

n=1 an(t)φn(x), where u(x) is a reference
velocity field. The modes φn(x) are found by proper orthogonal decomposition (POD)
using the snapshots method of Sirovich (1987). Only a limited number of modes (Nr )
is used in the representation of velocity; in the spirit of the POD, they are the modes
giving the main contribution to the flow energy.

The numerical method used discretizes the Navier–Stokes equations for compress-
ible flows. However, the Mach number considered is low (M = 0.1) and the flow
can be considered as incompressible since the density fluctuations are negligible.
Hence, the construction of the POD modes is based on the usual kinetic energy norm,
and a Galerkin projection of the incompressible Navier–Stokes equations over the
retained POD modes is carried out. This leads to the following low-order model:

ȧr (t) = Ar + Ckrak(t) − Bksrak(t)as(t), ar (0) = (u(x, 0) − u(x), φr ) (3.1)

where the Einstein summation convention is used, all the subscripts range from 1
to Nr and (·, ·) denotes the canonical L2 inner product. The coefficient Bksr derives
directly from the Galerkin projection of the nonlinear terms in the Navier–Stokes
equations and it can be easily expressed in terms of the POD modes. The terms
Ar and Ckr are calibrated using a pseudo-spectral method to take into account the
pressure drop as well as the interaction of unresolved modes in the POD expansion.
The calibration consists in solving an inverse problem where the coefficients Ar and
Ckr are to be found such that the model prediction is as close as possible in the L2

norm to the actual reference solution. This problem is solved using an accurate and
efficient optimization method: accurate because the method is spectral, and efficient
because the solution is obtained by solving a direct and an adjoint problem in one
shot. See Galletti et al. (2005) for a detailed discussion.

In order to evaluate the possibility of modelling this flow by a reduced number of
degrees of freedom, we consider two separate issues. As a first step, we a priori check
if the flow admits a low-dimensional representation. In other words, we study the
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POD case Time interval Number of snapshots

POD1 382.24 < t < 397.61 45
POD2 360.23 < t < 412.64 151
POD3 94.38 < t < 412.64 912
POD4 5.3 < t < 59.45 156

Table 2. POD database details.

approximation error of the flow snapshots as a function of the number of POD modes
retained. Note that no dynamics is involved at this stage, it is merely a question of the
POD modes actually spanning the solution manifold. The second issue concerns the
error between the coefficients predicted by the calibrated model and the projection of
the flow snapshots over the POD modes. This step is intended to verify if a quadratic
model, where the nonlinear term is derived from the POD modes and the linear term
is adjusted to fit the data, is capable of reproducing the dynamics of the flow.

With these objectives in mind, four different POD bases are computed using the flow
snapshots obtained in the three-dimensional simulation at Re = 300. The first three
(POD1, POD2 and POD3) are pertinent to the developed flow, i.e. when the three-
dimensional structures in the wake are clearly developed. The fourth (POD4) is relative
to the transient flow, i.e. when the three-dimensionality of the wake is developing.

The details of the snapshot databases used are summarized in table 2. The time-
averaged flow field was subtracted from each snapshot before carrying out the PODs
for the developed flow, while the two-dimensional unstable steady solution was
subtracted from each snapshot for the transient case.

The main motivation for using a different number of flow snapshots for the
developed flow is to show how the approximation properties of the POD modes
depend on the flow database. To this end, we considered the reconstructed fluctuating
energy for flow snapshots which are inside or outside the database used to determine
the POD modes, figure 3 (a–c). The abrupt reduction of captured energy corresponds
to snapshots which do not belong to the flow database. As the database becomes
larger, this jump becomes smaller: as the number of flow snapshots in the database
increases, the energy captured using a given number of modes increases for the
snapshots outside the database as expected, while it decreases for the snapshots inside
the database. This is a consequence of the chaotic nature of the flow and of the larger
snapshot space to be represented.

Moreover we see that taking a larger number of modes to build the model makes
sense only for larger databases. Large numbers of flow snapshots need to be taken
into account to recover high levels of fluctuating energy outside the database, even
in this case where the Reynolds number is small compared to real applications.
However, the dimensional reduction is from O(107) degrees of freedom to O(102) for
case (c), recovering about 70 % of the fluctuating energy outside the database. For
the transient (figure 3d) we see that eight modes are enough to give a reasonable
representation of energy.

Modes 1 and 3 relative to POD3 are shown in figure 4. The cylinder is not visualized,
its axis being the intersection of the planes x = 0 and y = 0. The first mode is related
to the classical vortex alley, although some corrugations due to three-dimensional
effects are visible in the x- and y-components. The z-component is approximately
one order of magnitude lower than the others, and it is at the threshold of numerical
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the database. Nr is the number of modes. (a) POD1, (b) POD2, (c) POD3 and (d) POD4.
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Figure 5. Developed three-dimensional flow: projection of the fully resolved Navier–Stokes
simulations over the POD modes (continuous line) vs. the integration of the dynamical system
obtained retaining the first 20 POD modes (circles). Only eight representative modal coefficients
are shown here.
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noise. The main time frequency of the coefficient associated with this mode is that of
the vortex shedding.

The third POD eigenfunction is of a different nature as it presents structures
elongated in the x-direction. Moreover, all its components have the same order of
magnitude. This mode appears to be related to the evolution of the three-dimensional
instability and to the interaction with the bounding walls. In time, the frequency of
the corresponding Galerkin coefficient becomes much lower. The subsequent modes
are of the same kind as the ones depicted. They either represent smaller and smaller
scales of vortex shedding, or finer three-dimensional structures.

For POD2 and POD4, the resulting dynamical systems were calibrated over the
corresponding databases of table 2, using 121 and 81 collocation points respectively.
A comparison between the model and the reference simulation was carried for the
time-evolution of the POD modal coefficients and is shown in figures 5 and 6. The
comparison was carried out for flow snapshots that are within the database used to
compute the POD modes. Therefore, Figures 5 and 6 show how the low-order model
fits the solution database from which the POD modes were derived.
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The physical phenomenon is far from periodic. In the fully developed case we
have low-frequency modulations as well as high-frequency bursts. In the transient
case the spectrum is more compact but it is not steady. In both cases we are able to
reproduce to a high level of accuracy the reference solution. As expected, the error is
concentrated in the last modes, because the influence on these scales of the unresolved
dynamics is higher. Since the simulation of the low-order dynamical system matches
with good accuracy the reference results, it follows that the error in the physical space
is of the order of the approximation error seen in figure 3.

An additional model was computed for POD1. In this case also the predictions are
accurate compared to the reference solution. The model coefficients depend on the
calibration database in a non-trivial way since they result in part from an inverse
problem. However, it can be observed that in both POD1 and POD2 the matrix Ckr

shows a pair of complex conjugate eigenvalues whose imaginary part is nearly equal
to the frequency of the vortex shedding. The corresponding eigenvectors are mainly
in the direction of the first and second POD mode. This feature was also observed in
Galletti et al. (2005) for the two-dimensional instability leading to vortex shedding.

Finally, in the derivation of the reduced models, we are at present limited by
the number of POD modes retained and the number of collocation points used
to calibrate the flow (see Galletti et al. 2005 for details) because of the nonlinear
optimization problem size: in the case of POD2 we solve an optimization problem
with 5260 controls.

4. Concluding remarks
Accurate ‘plant models’ of flows whose dynamics are characterized by complex

large-scale structures can be derived from simulation data sets. Within the range of
calibration, the error between the flow predicted by such models and the reference
solution is bounded. Moreover, it is of the order of the approximation error of
the original data set projected over the POD modes, thanks to the pseudo-spectral
approach employed. One result is hence that the adaptive control method proposed in
Bergmann et al. (2005) could be applied in this case over time horizons of the order
of 10 shedding cycles. However, the possibility of using calibrated POD models as a
predictive tool seems to be very remote in cases like the present where the spatial and
temporal complexity is important: the reconstruction error becomes relevant as soon
as we take flow solutions that lie outside the snapshot range. Using O(103) snapshots
and 60 POD modes, the representation error is still of the order of 30 % of the
fluctuating energy. For this reason there will be an exponential divergence between
any model prediction and the actual solution outside the snapshot range. Nonetheless
one aspect is important: if the objective is to recover an estimate of the flow field
from boundary measurements (for example a nonlinear observer), then such an error
might still be acceptable.

In conclusion, the relevance of POD models based on the calibration procedure
is that they can be used to determine control laws instead of the full Navier–Stokes
equations, when the model includes the effect of the actuators. We mention that the
grids used, their size and the number of flow snapshots can be representative of
engineering problems, as a step to application of low-order models to practical flows.
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